PHYTOECDYSONES OF Serratula

IV. SOGDYSTERONE

I. L. Novosel'skaya,M. B. Gorovits,and N. K. Abubakirov

UDC 547.926:591.147

Previously, from S. sogdiana Bge. family Compositae we isolated ecdysterone [1] and viticosterone E [2]. Subsequently, by repeated rechromatography on silica gel and alumina of a methanolic extract from the flowers of the plant we have obtained a new phytoecdysone which we have called sogdysterone. Yield 0.003%.

Sogdysterone (I), $C_{27}H_{44}O_8$, is an amorphous substance, $[\alpha]_D^{20}+43.9^\circ$ (c 0.41; methanol); $\lambda_{\max}^{C_2H_5OH}$ 242 nm (log ϵ 3.98); γ_{\max}^{KBr} 3300-3500 (OH), 1665 cm⁻¹ (C=C-C=O). It is a more polar compound than the other phytoecdysones isolated from S. sogdiana - R_f 0.16 [SiO₂/gypsum; chloroform-methanol (4:1)]. The optical rotatory dispersion curve of (I) (dioxane) showed positive ([M]₃₅₈ + 3520°; [M]₃₁₅ - 622°; a = +41°) and negative ([M]₂₆₀ - 3800°; [M]₂₃₃ + 14,300°; a = -181°) Cotton effects. This nature of the curve showed the presence of a 5β - \triangle ⁷-6-oxo-14-hydroxy grouping in sogdysterone [3].

In the high-mass region of the mass spectrum of (I) there are peaks of ions with $m/e478 (M-H_2O)$, 460 $(M-2H_2O)$, 442 $(M-3H_2O)$, 424 $(M-4H_2O)$, 409 $(M-4H_2O-CH_3)$ and 406 $(M-5H_2O)$, due to processes involving dehydration and the splitting off of one of the methyl groups. The peaks of ions with m/e379, 361, 343, and 325 show the presence of four hydroxy groups in the steroid skeleton of the new phytoecdysone [4-6].

The fragmentation of the side chain of (I) is similar to the decomposition of the side of ecdysterone and is characterized by ions with m/e 99, 81, and 69 [7, 8].

NMR spectrum of (I) (C_5H_5N , 100 MHz; HMDS, δ , ppm): 1.06 (3 H at C_{18} , s), 1.25 (6 H at C_{26} and C_{27} , s), 1.46 (3 H at C_{21} , s), 3.50 (H at C_{9} , m), 3.75 (H at C_{22} , m), and 6.15 (H at C_{7}). A broad four-proton multiplet in the 4.07-4.40 ppm region shows the presence of protons at C_{2} , C_{3} , and C_{19} . The absence from the NMR spectrum of I of the absorption of a C_{19} -methyl group permits the assumption that one of the hydroxy groups is located at C_{19} .

The acetylation of sogdysterone gave a mixture of the amorphic 2,3,19,22-tetraacetate (II), $C_{35}H_{52}O_{12}$ (M⁺ - AcOH - H_2O ; m/e 586); $[\alpha]_D^{20}$ + 56.4° (c 0.39; methanol) and the amorphous 2,3,19,22,25-pentaacetate (III), $C_{37}H_{54}O_{13}$ (M⁺ - AcOH - $2H_2O$; m/e 610). NMR spectrum of (II) (CDCl₃): 0.80 (3 H at C_{18} , s), 1.18 and 1.15 (6 H at C_{26} and C_{27} , s), 1.22 (3 H at C_{21} , s).

In solution in dry acetone under the action of phosphotungstic acid, phytoecdysone (I) forms an amorphous diacetonide (IV), $C_{33}H_{52}O_8$ (M⁺ 576), $[\alpha]_D^{20}$ + 50.0° (c 0.48; methanol). The production of the diacetonide (IV) shows the cis orientation of the hydroxy groups at C_2 and C_3 . Bearing in mind the fact that the same plant contains ecdysterone and viticosterone E, the glycol grouping in sogdysterone can be assigned the 2β , 3β -configuration.

The results of a comparison of the chemical shifts of the C_{18} , C_{21} , C_{25} , and C_{27} methyl groups of the new phytoecdysone with ecdysterone and of the tetraacetate of (II) with the triacetate of ecdysterone [1, 2, 7], and also the facts given above on mass-spectrometric fragmentation and optical rotatory dispersion permit the structure of 19,20R-dihydroxyecdysone to be proposed for sogdysterone:

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 429-430, May-June, 1975. Original article submitted February 20, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LITERATURE CITED

- 1. L. Zatsny, M. B. Gorovits, and N. K. Abubakirov, Khim. Prirodn. Soedin., 840 (1971).
- 2. I. L. Zatsny, M. B. Gorovits, and N. K. Abubakirov, Khim. Prirodn. Soedin., 175 (1973).
- 3. H. Scherrer, Helv. Chim. Acta, <u>52</u>, 2428 (1969).
- 4. J. Jizba, V. Herout, and F. Sorm, Tetrahedron Lett., 5139 (1967).
- 5. K. Nakanishi, Pure Appl. Chem., 25, 167 (1971).
- 6. B. Z. Usmanov, M. B. Gorovits, and N. K. Abubakirov, Khim. Prirodn. Soedin., 125 (1973).
- 7. N. N. Galbraith and D. H. S. Horn, Aust. J. Chem., 22, 1045 (1969).
- 8. I. L. Zatsny, M. B. Gorovits, Ya. V. Rashkes, and N. K. Abubakirov, Khim. Prirodn. Soedin., 155 (1975).